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VEGETATION MODELLING IN 2.5D
VISIBILITY ANALYSIS

Alexandra RASOVA

Vegetation modelling in 2.5D visibility analysis

Abstract: The effect of vegetation, so-called ‘tree fact@’an issue that is often overlooked or
not considered in visibility analysis. Partiallzjq is due to the lack of data that would express
its changing characteristics, such as height, @patient or other properties. In this paper, we
explore the possibilities of including the vegeiatin the visibility analyses that relies on 2.5D
digital elevation models. We discuss the modellifigtand-alone trees placed in a short dis-
tance from the viewing point, where they do notassarily block the entire view. In the long-
distance scenario, we explore the modelling tearespf opaque vegetation with known and
unknown spatial extent and height. The probablevsied proved to be a useful tool to esti-
mate the uncertainty of the viewshed derived frdabal digital elevation models, which are
affected by the vegetation present in these modéls.proposed techniques are based on the
common 2.5D modelling, so they are easy to integrdth other analytical layers.
Keywords: viewshed, visibility, vegetation, probable viewsdhspatial analysis, visual perme-
ability, GIS, TanDEM-X, SRTM, ALOS PALSAR

Introduction

The visibility analysis is based on determinatidnaceas that are visible from an observing
point. In most GIS software packages, the basicpedation is rather simple, requiring only
a digital elevation model (DEM) and location of thieserver position. The result is the classifica-
tion of the DEM cells into visible and invisible @ However, there are several issues that should
be considered in order to achieve correct andhielieesults. Connoly and Lake (2006) categorize
them into computational, experimental and substanti

The computational and experimental issues areegkliat the algorithm and the design of the
analysis (appropriate resolution of the DEM, siz¢he computational area, etc.), while the sub-
stantive issues reflect various aspects of thelifeabnvironment; the vegetation, or so the called
tree-factor, is one of latter. Generally, the tfaetor is difficult to include to vegetation moded
due to its properties, which can vary in time amastare difficult to model in 2.5D. Usually, data
represent the spatial extent and height of the tatiga in a specific time point and may be out-
dated after few years. Various parts of the tree (tunk, the crown) and various tree types (conif-
erous or deciduous, trees with broad or thin crgwmey obstruct the view differently. Their effect
also depends on the distance from the observeni¢ineng angle and the density of the foliage.
The vegetation also changes during the year seaSortapture all these characteristics, a detailed
3D model with a number of attributes would be needéowadays, these types of datasets are
generally still unavailable.

This paper is based on the dissertation thesis V@a§2018) and focuses on three cases of
vegetation modelling: i) as a solid obstacle witkrmwn spatial extent, ii) as an obstacle with
a known spatial extent that is partially transparand iii) as a solid obstacle with an unknown
spatial extent. The vegetation that blocks the wenwpletely and has a known spatial extent can
be modelled simply by adding the vegetation to diggtal terrain model — in the same way as
buildings or other features would be added wheatirg the digital surface model.

Ing. Alexandra RASOVA, PhD., Department of TheowdtiGeodesy, Slovak University of Technology in
Bratislava, Radlinského 11, 810 05 Bratislava, e-nadégixandra.rasova@gmail.com

10



When the vegetation is considered as a semi-tramspabstruction, we propose an approach
to model the trees that stand nearby the obsendda not cover the view entirely. The vegeta-
tion with an unknown spatial extent is a commoméswhen using global digital surface models.
In this case, the goal is to estimate the effestegfetation, so that the factor is consideredeaxtl
to some extent.

1. Vegetation as an obstacle in visibility modellig

The visibility is mostly determined by the landseamd landscape features, their size, the dis-
tance from the observer and exposition (Fellem&@9). The topography of the terrain is repre-
sented by DEM; most of the viewshed algorithmsdasigned for a raster DEM. DEM can repre-
sent either the bare terrain (digital terrain mod¥IM) or the terrain with the features that are
permanently located on it, such as buildings amgtation (digital surface model, DSM).

Modelling of the vegetation depends on the accéssitasets and their quality. In Slovakia,
the main data sources include the Basic databasb€@eographic information system (@E")
and the vegetation maps. Some applications, eajias@rchaeology, may require knowledge of
the vegetation referenced to some past time pefiod.information can be extracted, for instance,
from the maps of potential vegetation, historicap®, or from paleobotanical researches. How-
ever, as mentioned, e.g., in Connoly and Lake (R00&Vheatley and Gillings (2000), these data-
sets generally lack the resolution needed.

One of the modern data collection methods that dgitbmew possibilities to landscape and
vegetation modelling is the laser scanning. In taldito a more detailed DEM, the multiple beam
reflections allowed to determine the height andsitgrof the vegetation. For instance, Murgotio et
al. (2012, 2013 and 2014) explored the use of Issanning data for vegetation modelling in visi-
bility analysis. They combined aerial data with teeestrial scanning at shorter distances, leading
to detailed short-distance visibility models, iniethsingle trees are modelled in 3D at a high reso-
lution. The 3D modelling of vegetation is used rost urban spaces with short-distance qualita-
tive visibility analysis, see, e.g., Yu et al. (B).1Lin et al. (2015), or Li et al. (2015). The Itrof
these approaches for long-distance visibility asialys in the amount of high-resolution data that
need to be processed and collected in the firsepla

Pre-laser scanning approaches were introduced kan E997) and Llobera (2007). Dean
(1997) proposed the visual permeability method thssts triangulated irregular surfaces (TIN).
Therein, the author defines the permeability coedfit as the length of the line of sight (LoS)
from the viewing point to complete obstruction b&tLoS by the tree coverage. In this approach,
the level of visibility decreases linearly with reasing distance. Llobera (2007) expressed the
probability of visibility through vegetation viag¢h_ambert-Beer physical law. The LoS is consid-
ered to be a beam (not a geometrical curve) thpaigally influenced when passing through the
vegetation. As a result, only a part of it will chathe target point. The probability of LoS getting
from the observing to the observed point was exaedy Llobera (2007) using an exponential
function:

p(x) = g (k>0, x>0), 1)

wherex represents the distance from the observerlgrilis the density function. The density
function and its parameters need to be derived filoenvegetation properties or estimated. We
simplified this approach and the function that egses the decrease of the visibility, and used it t
model the effect of stand-alone trees standinghyeidnie observer.

2. Experiments

In our experiments, we explore the possibilitiesvefjetation modelling in 2.5D visibility
analysis, which is using a raster DEM, where thiés deave assigned an elevation. Most of the
DEMs that are available today are in 2.5D andttpe of modelling can be easily integrated with
other analytical layers. All computations were igtrout in ArcMap 10.2, using the “Viewshed”
function from the Spatial Analyst toolbox for thisibility analysis.
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2.1 Vegetation as an opague obstacle with known exit

Let us assume that we have a digital terrain m@d@&M) and a vegetation dataset that con-
tains information about its height. In this case,aan simply add the vegetation and other obstruc-
tions to the DTM. The newly created DSM will be saQuently used in the visibility analysis.
Thisi is the )simplest and also the most common ambr§Wheatley and Gillings, 2000; Nutsford
et al., 2015).
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Fig. 1 Comparison of viewsheds computed using fropy left to right) i) a digital terrain model (OV),

ii) digital surface model (DSM) that contains vegetn, iii) their difference, and iv) a probablewished

that reflects the uncertain height of the vegetatiterrain in the study area (shaded digital tarraddel
DMR-3.5, bottom)

In this experiment, we used the DTM DMR-3.5 witle ttesolution of 10 m that covers Slova-
kia. It was kindly provided to us by the Geodetitl &Cartographic Institute Bratislava. The vege-
tation dataset was kindly provided by the Natidfatest Centre. In this dataset, the vegetation is
represented by polygons and the vegetation heagbtstored in separate attributes for the individ-
ual tree species that are located inside the palygo

To create the DSM, the polygons were convertedrsit to a raster, using the height of the
dominant tree species as the elevation value.da odan unknown vegetation height, it is possi-
ble to compute the probable viewshed (Fisher, 19BR¢ probable viewshed estimates the prob-
ability of a cell being visible, even with smallnations in the input DEM using Monte Carlo
simulations. While in RaSova (2014) this method wssd to consider the DEM uncertainty, here
we employ it to deal with the uncertain vegetatimight, using the same “Probable viewshed”
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tool that was created in ModelBuildeThe error component was thus added only to titbogils
covered by vegetation. From the vegetation datasegstimate the mean value to be 15.5 m and
the standard deviation of 8.9 m. In the originaladat, the vegetation height ranges from 1 to
44 m. The probable viewshed was computed from @0 realizations of the DSM, considering
also an autocorrelation via a 3x3 smoothing filfEhese settings are justified by the study of
R&Sova (2018), who investigated the impact of ble¢ghtotal number of random realizations of the
DEM and the type of the smoothing filter.

In Fig.1, we compare viewsheds computed using thMand the DSM that was created by
adding the vegetation to the DTM as well as thebpbte viewshed. The probable viewshed pro-
vides an estimation of the influence of the vegetatvith an uncertain height. Although it does
not match the DSM-derived viewshed exactly, it @sgible to recognize the invisible areas (visi-
bility value = 0), the probably visible areas (&ds 1) and the uncertain areas (greater thant0, bu
smaller than ~1). We can see that the vegetatistrudis a portion of the view from the observing
point, causing that some cells are visible onlytteen DSM-derived viewshed. These cells are lo-
cated on the tops of tree crowns, which, thankfeo height, managed to surpass the local hori-
zon and became visible.

We would like to stress that this is an importatt o keep in mind when designing the analy-
sis as well as when analysing the results derivech fDSMs. For instance, viewsheds are often
used to analyse the reciprocal visibility. Usua#lyeas visible from the viewing point are consid-
ered to be also the areas, from which one canhgeeltserving location. In this case, however, the
observer of the reverse viewshed would be placempof the trees. Obviously, such scenario can
be considered as incorrect for most practical apfibns. On the other hand, the reverse viewshed
computation with a viewing point placed correctly the terrain would produce viewsheds with
practically no visible cells in areas covered blyafge. All cells in close vicinity of the observer
would be then, say, a few meters higher than thghbeuring ones, thereby blocking the view
completely. The model of visibility inside forestadeas requires a different analysis design than
in the open landscape, e.g. shorter observing saatidifferent method that will not consider the
trees to be opaque blocks.

2.2 Stand-alone, partially transparent trees

Some obstacles that are present in the landscapdloek the view only partially, such as the
trees with their crowns obstructing a larger partiof the view than the trunks. This semi-
transparency can be understood either as the pbiliteaf the environment, or as the physical
portion of the view being blocked, for instancedryobstruction covering only a part of the DEM
cell in horizontal or vertical direction. The perability of the environment can be considered in
the analysis using, for instance, the exponentiattion (see Llobera, 2007) and the properties of
the obstacle. Either way, the visibility value wilecrease continuously with increasing distance
from the observing point. If the obstacles block thew only partially, the visibility value will
drop at the obstacle, but it will not change whhb tistance.

In both cases, we want to evaluate the effect dfglly transparent obstacles, i.e. to determine
and quantify the affected grid cells. For this ekpent, artificial data were created. As the input
data, we used a raster sampled at 1 m and hawingsdant value, thus representing a flat surface.
The offset of the observer was chosen to be 1¥/enchose this value to simulate a height of hu-
man’s eyes above the ground in a standing strgigbition. Five trees were placed 100 — 200 m
from the observing point. Each tree was 5 m widg B m tall, and had assigned a value of per-
meability coefficienty from the interval <0;%. Here,p= 0 means a complete obstruction of the
view and¢= 1 no effect on visibility.

The obstructing effect on visibility (Fig.2) wasmputed by a multiplication of the single
viewshed raster with the raster of the total weigbt the obstructions. The raster of the total
weights is obtained by multiplying the individuakights of each obstruction. This means that if
the LoS passes through more trees, their effedtsbeimultiplied. The individual weight raster
was computed for each tree separately and contelfsswith the value 1 in areas that are not af-

! The tool is accessible at ArcGIS website (goo@MAma) and its usage is described, e.g., in
Rasova (2014)
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fected and cells with the values of the permeafilinction (or the permeability coefficient of the
tree) in the areas that are obstructed by the Ineerder to ensure a continuous decrease of the
visibility value, we used a decreasing exponeritiattion, where the level of the visibility drops
to a half every 50 m after encountering an obstacle

This approach is appropriate for short-distancénity analysis, in which a larger detail is
needed. In longer distances, trees appear moredemasly, stand-alone trees tend to blend with
the background and larger groups of trees or fettestd to present solid, opaque obstacles.
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Fig. 2 Semitransparent obstacles (trees) with sati¢he permeability coefficient. Left: discrete
decrease of visibility, right: continuous decreaseisibility using exponential function

2.3 Opaque vegetation with unknown spatial extent

Often, especially when using global DEMs that wacquired using radar interferometry, the
extent of vegetation that is present after daterfilg is not known. The landscape surface repre-
sented by these DEMs is not as smooth as local D&hNfs higher resolution. Too often, the
viewsheds derived from the global DEMs consistaattiered cells in some areas, so that it is diffi-
cult to reliably determine the visible and invigldreas.

In the next experiment, we used a study area imt¢inthern Guatemala, which is almost com-
pletely covered by dense vegetation. The vegetadioto some (unknown) degree, also present in
the near-global DEMs (gDEMSs) that we used: SRTNhatresolution of 1” (approx. 30 m), and
TanDEM-X and ALOS PALSAR, both at the resolution®4” (approx. 12 m). All three DEMs
are based on radar interferometry data. A smaler ¢f the study area is also covered by a local
DTM derived from aerial laser scanning at a muctaiterl resolution of 1 m (Lieskovsky, Kava
a Dréapela, 2017). Here, this surface is considrdx as the correct or the “true” one, due tafits
least one order of magnitude better accuracy asalugon. In addition, the representation of the
terrain and the viewshed derived from this surfaes also considered to be the correct one.

To estimate the vegetation effect on the visihilitye computed the probable viewshed for sev-
eral points using the above mentioned “Probablevsiied” tool. The probable viewshed was
computed from 100 random realizations, assumingnabdistribution of the error with an auto-
correlation included using a 3x3 smoothening filledne mean value and the standard deviation of
the error (the error includes both the DEM errod éme vegetation height) were computed from
the difference between the local DEM and the gDEMSs.

This process was performed for 18 observing pdatated on hills. Here, we demonstrate the
results for two special cases (Fig. 3): i) viewpgnt 1, having the smallest differences between
the single viewsheds, and ii) viewing point 2, whthre single viewsheds from global DEMs differ
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the most from the viewshed that relies on the @M. Here, we compare the single viewsheds
computed on local DEM and single and probable viimgls computed on gDEM. In this compari-
son, all cells with the probable viewshed valuehbigthan O are considered to be potentially visi-
ble. It should be noted that the gDEMs have lovesolution than the local DEM derived from
LIiDAR, which means they are unable to capture thaesslevel of detail. As a result, at least some
portion of the discrepancies between the local Détld gDEMSs is probably caused by the differ-
ent resolutions.
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Fig. 3 Study area in northern Guatemala (shade®E& X digital elevation model)

The single viewsheds from the observing point I.(Bi, Tab.1) appear to be similar for all
DEMs. It is also seen that the probable viewshediyced some sort of a buffer around the visible
cells, thus representing the uncertainty of thglsiniewshed. Overall, there are 23-26 % of poten-
tially visible cells that were originally invisiblie the single viewshed. The majority of the poten-
tially visible cells have values from the intery@l0, 0.2>. The amount of cells with the probable
viewshed value = 1 is less than 1 % for each gD®&Mch means that there are only very few lo-
cations that are unaffected by the small changekeoferrain elevation. The comparison with the
local, more accurate, DEM is reported in Tab. 3. &serve that all gDEMs have similar results
in terms of agreement with the local DEM: about8®9% of cells were evaluated identically, be-
ing either visible or invisible on the local DEM agll as on the respective gDEM. Interestingly,
some cells (2-7 %) were identified as visible ootythe local more accurate DEM, which means
that their probability of being visible on the pedibe viewshed was equal to 0. Other cells that
were detected as invisible on the local DEM werepiially visible on gDEMs (11-16 %).

On the other hand, the limited views from the obiser point 2 (Fig. 5, Tab.1) derived from
the gDEMSs are significantly enlarged by the probabiewshed, which is in accordance with the
single viewshed from the local DEM. The values aihyable viewshed are prevalently O or close
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to 0 for each gDEM, with less than 0.2 % of cebwing the probability of 1.0. Again, this indi-
cates that relatively small changes of terrain ketwthe observing point and target cell can have
a large impact on the visibility. The comparisorpotentially visible cells and the single viewshed
computed on the local DEM are in Tab. 3. In thise;ahere are larger differences between the
gDEMSs. While 80 % of TanDEM-X cells were evaluatedccordance with the local DEM (simi-
lar percentage as for observing point 1), both ALRY8 SAR and SRTM have significantly lower
agreement with the local DEM (48.4 % and 47.1 %peetively). These two models have also
higher percentage of potentially visible cells thagre invisible on local DEM (ALOS PALSAR
39 %, SRTM 45.4 %) than TanDEM-X (less than 6 %)ug, although the single viewshed from
the TanDEM-X model contained the lowest amountisible cells, the probable viewshed based
on this model is closest to our reference resuttaasbe seen from Fig. 5. This experiment there-
fore indicates that the probable viewshed shouldrbéerred over its single counterpart, especially
when the quality of the used DEM is low or unknowmthat case, the errors caused by the uncer-
tain elevations in the DEM can be reduced, at leasbme extent, resulting in potentially more
accurate information on the visibility in that area

Tab. 1 Comparison of area visible from the observig point 1. Single viewshed (SV) cells
have values 0 (invisible) or 1 (visible). Probableiewshed (PV) cells values are in
a range from 0 to 1.

Visibility
DEM 0.0 (0.0,0.2> [ (0.2,0.4> [ (0.4,0.6> [ (0.6,0.8> [ (0.8, 1.0) 1.0

% [km®[ % [km®| % [km®| % [km®| % [km®| % [km’] % [ km

Local DEM, SV | 64.1 | 87.4 | - - - - - - - - - - | 359 | 4838
TanDEM-X, SV | 86.4 |117.7| - - - - - - - - - - | 136 | 185
TanDEM-X, PV 60.4 | 82.2 | 21.2 | 28.8 8.0 10.9 4.6 6.2 3.1 4.2 2.7 3.7 0.1 0.2
ALOS PALSAR, SV | 76.8 |104.6 | - - - - - - - - - - | 232|316
ALOS PALSAR, PV | 53.3 | 725 | 22,5 | 30.6 | 11.7 | 16.0 7.0 9.6 3.8 5.2 1.7 2.4 |0.003|0.005
SRTM, SV 733 | 99.9 | - - - - - - - - - - | 267 | 363
SRTM, PV 50.3 | 68.5 | 15.6 | 21.3 9.9 13.5 8.3 11.3 7.2 9.8 7.8 10.6 0.9 1.2

Tab. 2 Comparison of area visible from the observig point 2. Single viewshed (SV) cells
have values 0 (invisible) or 1 (visible). Probableiewshed (PV) cells values are in
a range from 0 to 1.

Visibility

DEM 0.0 (0.0,0.2> [ (0.2,0.4> [ (0.4,0.6> [ (0.6,0.8> [ (0.8,1.0) 1.0
% [ km®| % [km®] % [km®| % [km’] % [km°| % [km®| % [ km?
Local DEM, SV 54.3 | 74.0 - - - - - - - - - - 45.7 | 62.2
TanDEM-X, SV 97.7 |1 133.1 - - - - - - - - - - 2.3 3.1
TanDEM-X, PV 63.1 | 859 | 33.9 | 46.1 1.5 2.1 0.4 0.6 0.4 0.5 0.6 0.8 0.1 0.1
ALOS PALSAR, SV | 88.7 [120.8 - - - - - - - - - - 11.3 | 154
ALOS PALSAR, PV | 61.0 | 83.0 | 33.7 | 45.8 4.2 5.7 0.4 0.5 0.3 0.5 0.4 0.6 0.04 0.1
SRTM, SV 87.7 |119.4 - - - - - - - - - - 12.3 | 16.8
SRTM, PV 545 | 74.3 | 276 | 37.6 | 10.5 | 14.4 5.0 6.8 15 2.1 0.6 0.9 0.2 0.3

Tab. 3 Differences between the probable viewshedsid reference single viewshed derived
from local LiDAR-based DEM. All cells with the probable viewshed value > 0 are con-
sidered to be potentially visible.

Agreement with the | Potentially visible only | Potentially visible

local DEM on the local DEM only on the gDEM
% km”® % km” % km”
Obs. point 1: Local DEM — TanDEM-X 82.1 111.8 7.1 9.6 10.9 14.8
Obs. point 1: Local DEM — ALOS PALSAR 82.6 112.5 33 4.4 14.1 19.2
Obs. point 1: Local DEM — SRTM 82.5 112.2 1.8 2.5 15.7 21.4
Obs. point 2: Local DEM — TanDEM-X 80.0 109.0 14.4 19.6 5.6 7.6
Obs. point 2: Local DEM — ALOS PALSAR 48.4 65.9 12.7 17.2 39.0 53.1
Obs. point 2: Local DEM — SRTM 47.1 64.0 7.6 10.3 45.4 61.7
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Conclusions

In this paper, we explored the possibilities ofl2fmodelling of the vegetation, the tree factor,
in the visibility analysis. Three cases were exauin) the opaque vegetation with known extent,
i) the single standing trees that are semitrarsgaand iii) opaque vegetation with unknown ex-
tent, such as is present in most global DEMs. Adlspnted methods of 2.5D modelling of the
vegetation in visibility analysis can be modifieddaused for different types of obstructions, such
as buildings in signal propagation analysis.

Known spatial extent and attributes of the vegetatheight, tree species, density, etc.) allow
usage of various modelling techniques (not onlysthonentioned in this paper). The simplest
method is to create a DSM and use it to computevigibility. When a larger detail is required,
high-resolution datasets and 3D modelling may beded. The semi-transparency, or partial ob-
struction of the view is mostly relevant when waoikiwith the short-distance view with the trees
placed near the observer. The level of visibiliteathe LoS encounters the obstacle can drop con-
tinuously or discretely, depending on the specifiplication.

When the spatial extent of the vegetation is unkn@md the analysis is performed using
a DEM, where the vegetation is present (or not detaly filtered), the probable viewshed may be
utilized to estimate the potentially visible arebBsour experiment, we were able to evaluate the
results against a more accurate DEM that was sargil@ higher resolution. When the single
viewshed computed on the global DEMs was similathi® more accurate local DEM-derived
viewshed, the probable viewshed matched the shépkeovisible areas. Thus, the result was
a more continuous area with less scattered inggiblls. Also, we have observed an interesting
behaviour, when the difference between the locdl@abal DEMs was more pronounced. In this
case, the probable viewshed correctly identifiesh dhose areas that were not visible in the single
viewshed.

Thus, this experiment has demonstrated successhélyusage of the probable viewshed to
model the potentially visible areas in the landsgaphere unwanted vegetation is present in the
input DEM. This is crucial for applications thatsame different vegetation extents than the cur-
rent one, e.g., forestry for modelling of the vetieh changes, spatial archaeology with the goal
of modelling past landscape, or landscape archited¢hat is focused on the assessment of the po-
tential visual impact of new structures or othediscape changes.

DMR-3.5 was kindly provided by the Geodetic andt@gaphic Institute Bratislava.

Digital elevation model TanDEM-X was kindly prouidey the German Aerospace centre DLR as
a product of the DLR’s TerraSAR-X /TanDEM-X satelli

Shuttle Radar Topography Mission (SRTM) 1 Arc-Sec¢slobal data are available from the U.S.
Geological Survey.

ALOS PALSAR (Dataset ALOS PALSAR_Radiometric_TerCairrected_low_res) is a product
of Alaska Satellite Facility ASF DAAC 2014; includes Material © JAXA/METI 2007.
DOI: 10.5067/JBYK3J6HFSVF.
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Resumé
Modelovanie vegetacie v 2,5 analyzach viditaosti

Tento¢lanok sa venuje problematike vegetacie v analyzaditel'nosti, ktoré vyuzivaja 2.5D digitalne
vysSkové modely. Vegetacia je jednym zo substangidirfaktorov ovplyviujicich viditd’nos’ a jej modelo-
vanie je naréné kvoli jej premenlivosti ¥ase a nedostatku djahlivych dat vo vSeobecnosti.

3D modelovanie vegetéacie je stébstejSie vyuzivané v mestskych priestordtre v analyzach vidite
nosti na kratke vzdialenosti, ale tieto postupyjrienozné jednoducho potiar analyzach na dlhé vzdiale-
nosti kvoli ich komplexnosti a ndrokom na data sokym rozliSenim. V takychto pripadoch je stale&asj
tejSie vyuzivané 2D modelovanie. Postupy navrhmugimto¢lanku vyuzivaju bezné 2,5D digitalne vysSkové
modely, takZe dosiahnuté vysledky su jednoduchegiolvaténé s ostatnymi analytickymi vrstvami.

V naSich numerickych experimentoch sa venujeme dpadom: i) nepridladnej vegetacii so znamym
priestorovym umiestnenim a znamou alebo neznamskowy ii) ¢Ciastaine prietfadnej vegetacii umiestnenej
v blizkosti pozorovacieho bodu, a iii) nepriabinej vegetacii s neznamym priestorovym umiestnenim

Najjednoduchsi a n&gstejSie pouzivany postup je vytvorenie digitalnetomlelu povrchu pridanim vege-
tacie na digitalny model reliéfu. Ak je vySka ve@@e neznama, ale pozname jej rozmiestnenie, jenénoz
vypitat’ pravdepodobnu viditeos’ na odhadnutie vplyvu jej vysky.

V pripade samostatne stojacich stromov umiestnemyblizkosti pozorovata moéze by potrebné zo-
hradnr fakt, Ze nezakryvaju vyad Uplne.Ciasta:na prietfadnos stromov méze ki vyjadrena pomocou
koeficientu priepustnosti. Urotieviditelnosti po prechode prekazkou moze kigsad diskrétne alebo konti-
nualne, v zavislosti od modelovanej situacie.

V najzasadnejSom experimente tokithnku vyuzivame pravdepodobn vidites’ na odhadnutie vidi-
telnosti neovplyvnenej vegetaciou pri pouziti globakmyligitalnych vySkovych modelov. VSetky tri poéit
modely, SRTM, TanDEM-X a ALOS PALSAR, su vytvoreraglarovou interferometriou, kde ¢§as’ vege-
tacie odfiltrovana pri spracovani, avsak jej (nemajas’ v modeli ostava. Podarilo sa ndm ukazae prav-
depodobna vidiog’ vypitana s pouzitim parametrovéenych porovnanim s lokalnym digitalnym vys-
kovym modelom s ni vysokym rozliSenim, poskytla odhad viditesti, ktory vystihoval referémy mo-
del vyrazne lepSie, nez jednoduché viltitesti. Tento postup tak mdzetbyyhodny pri aplikaciach ako je
priestorova archeol6gié krajinné planovanie, kde je vegetécia neziadupimkom, avSak nie je ju mozné
z digitadlneho vySkového modelu odstrani
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Obr

Obr.

Obr.
Obr.

Obr.

Tab.

Tab.

Tab.

1 Porovnanie viditeosti vyp@itanych s pouzitim (horelava doprava) i) digitalneho modelu
reliéfu, ii) digitdlneho modelu povrchu, ktory obsge vegetaciu, iii) ich rozdiel a iv)
pravdepodobni viditeog’, ktord zoffadiuje neuditd vySku vegetacie. Priebeh reliéfu vo
vypoctovej oblasti (dole, tisovany digitalny model reliéfu DMR-3.5).

2 Ciastatne prieffadné prekazky (stromy) s hodnotami koeficientugargnosti. \tavo: diskrétny
pokles viditénosti, vpravo: spojity pokles vidifeosti s pouZitim exponencialnej funkcie.

3 Vypdtova oblag v severnej Guatemale (tievany digitalny vyskovy model TanDEM-X).

4 Pozorovaci bod 1rdva: i) spravna jednoduchd vidite®s’ vypccitana na lokalnom digitadlnom
vySkovom modeli, a jednoducha a pravdepodobna e’ vypositand na modeloch ii)
TanDEM-X, iii) ALOS PALSAR, iv) SRTM. Zobrazené s®etky bunky s pravdepodobrios
viditelnosti vySSou ako 0.

5 Pozorovaci bod 2.I'dva: i) spravna jednoduchd vidites vypcitana na lokalnom digitdlnom
vySkovom modeli, a jednoducha a pravdepodobna elithy’ vypositana na modeloch ii)
TanDEM-X, iii) ALOS PALSAR, iv) SRTM. Zobrazené s®etky bunky s pravdepodobrios
viditelnosti vySSou ako 0.

1 Porovnanie oblasti viditeej z pozorovacieho bodu 1. Jednoducha Midiag’ (SV) nadobuda
hodnoty 0 (nevidittné) alebo 1 (viditthé). Pravdepodobna viditeos® (PV) nadobldda hodnoty
z intervalu od 0 po 1.

2 Porovnanie oblasti viditeej z pozorovacieho bodu 2. Jednoducha Jididg (SV) nadoblida
hodnoty 0 (nevidittné) alebo 1 (viditthé). Pravdepodobna viditeos” (PV) nadoblda hodnoty
z intervalu od 0 po 1.

3 Rozdiely medzi pravdepodobnymi vitiites’ami a refereénou jednoduchou viditeos’ou vypo-
¢itanou z lokalneho digitalneho vySkového modelu.eti bunky s pravdepodobriosl
vidite'nosti vy$Sou ako 0 s povaZované sa potencialitelné.
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