Geographic information systems

Working with raster layers – part III

(Lesson 9)

Ľuboš Balážovič, Hana Stanková © 2007-2017

Contents

- SRTM
- raster reprojection
- raster clipping
- raster reclassification
- shaded relief
- viewshed analysis
- homework assignment no.4

SRTM

- SRTM (Shuttle Radar Topography Mission)
- mapping of the Earth surface by radar systems
- principle data acquired by
 - two radar antennas allow
 - us to create stereo (3D)
 - model digital elevation
 - model (DEM)

Raster reprojection

- transformation of spatially localized raster into different spatial reference system
- e.g. WGS84 <-> SJTSK
- in QGIS:
 - Raster → Projections → Warp (Reproject)
- it is possible to set additional parameters by editing the command line

Raster reprojection

Exercise:

 transform the raster of SRTM DEM from WGS84 to SJTSK with target resolution of 50 m

Raster reprojection

Exercise:

- transform the raster of SRTM DEM from WGS84 to SJTSK with target resolution of 50 m
 - Solution:
- add following parameter to command line:
 -tr 50 50

Raster clipping

- clipping the specified area from raster:
 - **Raster** \rightarrow **Extraction** \rightarrow **Clipper**
- select the extent by drag on canvas

- Exercise:
- clip the rectangular area from SRTM DEM

Reclassification

- replacing the values in the input raster with new values according to certain rules
- there is no special tool for reclassification in QGIS
- however, we can use Raster calculator for simple reclassification (two categories)
- for advanced reclassification (more than two categories) we can use GRASS tool
 r.reclass

Reclassification

- example of reclassification rules:
 - 0 thru 20 = 1
 - 20 thru 40 = 2
 - 40 thru 60 = 3
 - ... etc.
- rules are set in the text file or directly in the r.reclass dialog window

Reclassification

Exercise:

- reclassify the clipped DEM as follows:
 - lowlands (up to 300 m.a.s.l.)
 - low highlands (301 to 800 m.a.s.l.)
 - medium highlands (801 to 1500 m.a.s.l.)
 - high highlands (over 1500 m.a.s.l.)

Shaded relief

- DEM tools:
 - Raster → Analysis → DEM (Terrain models)
- shaded relief (Hillshade), slope (Slope), aspect (Aspect) ... etc.
 - Exercise:
- create the shaded relief from clipped DEM

Viewshed analysis

- viewshed analysis using DEM
- GRASS module r.viewshed creates the raster of cells visible from the location specified by coordinates X,Y
- in each cell a value of vertical angle (in degrees) is stored below which is that cell visible from specified location (0° – under, 90° – horizontally, 180° - above)

Viewshed analysis

Exercise:

 create a raster of surface visibility from arbitrary location on clipped DEM

- Find out how many square kilometers of National Park (NP) or Protected Landscape Area (PLA) is located in certain elevation range.
- input data:
 - elevation points (vector layer)
 - NP or PLA boundary (vector layer)
- output:

area in km² (single value)

Workflow:

- 1. Creation of DEM.
- 2. Reclassification of DEM to specified elevation levels.
- 3. Conversion of reclassified raster to vector.
- 4. Overlay of NP (PLA) and the polygon from step 3.
- 5. Computing the area of polygons.

- **1. Creation of DEM**
- use v.surf.rst tool for interpolation of
 - DEM from input point layer (see Lesson
 - 8 for details)
- set target resolution to 100 m

- 2. Reclassification of DEM
- use r.reclass tool for reclassification of
 - DEM values into elevation levels (see
 - Lesson 8 and 9 for details)
- set target value 1 for elevation range of ineterest
- set target value NULL for elevation
 - range out of interest

3. Conversion to vector

- use Polygonize tool for conversion of
 - reclassified raster to vector (see
 - Lessons 8 for details)

4. Overlay

- use Clip or Intersect tool for overlay the
 - elevation polygon and NP polygon (see

Lessons 7 for details)

5. Computing the area

- find out the area of intersected polygon
 by Identification tool (icon with i) in
 Derived attributes
- for multiple polygons use Dissolve tool to obtain a single multipolygon prior to area identification

The End

Thank you for attention!