
 3

Kartografické listy / Cartographic letters, 2025, 33 (1), 3-18

EDGE DETECTION USING

TRIANGULAR NETWORK DECIMATION

Veronika HAJDÚCHOVÁ, Richard FECISKANIN

Edge detection using triangular network decimation

Abstract: Edge detection is an important part of various tasks in the geographic information
systems, photogrammetry, and computer vision. Existing methods mostly work on 2D raster
images, where different algorithms are used to examine changes or discontinuities in the color
or saturation of pixels. In this article, we present a method and script that is capable of edge de-
tection on 3D triangulated irregular network (TIN) models. This approach works with the trian-
gle normals, calculating the angle between the normals of adjacent triangles. Angle between
triangles can show inclination differences of adjacent triangles, so if the angle is smaller than
given threshold value, the adjacent triangles have small plane inclination difference, which
means that those triangles belong to the same plane, but when there is bigger angle, it can indi-
cate discontinuity – edge on model.

Keywords: edge detection, digital elevation model, triangular irregular network, 3D mesh,
QECD, Python

Introduction

Edge detection is one of the most important tasks in the field of computer vision and image
processing. Edges provide essential information for many subsequent tasks, such as image recog-
nition, segmentation, corner and road detection and identification of discontinuities. These tasks
rely on extracting object boundaries or identifying prominent edges from original images (Jing et
al., 2021; Igbinosa, 2013). Edge detection identifies areas with significant changes in color intensi-
ty (or brightness). Such discontinuities often correspond to discontinuities in depth, discontinuities
in surface orientation, changes in material properties and variations in scene illumination (Das,
2016; Pu et al., 2021).

Though extensively used in computer graphics, edge detection is also relevant in geoinforma-
tics due to the reliance on raster images, including satellite imagery and digital elevation models
(DEMs). Edge detection can highlight terrain features, building footprints and boundaries of other
elements. As noted by Minár and Evans (2008), Pacina (2008), identifying boundaries of elemen-
tary forms is a good starting point for land surface segmentation.

Most edge detection operators are applied to images by comparing neighbouring pixel values
and their change. Main division and description of most used edge detection methods on images
were introduced in Jing et al. (2022) that categorized edge detection methods to two main streams
hand-crafted based methods (e.g., Sobel operator, Prewitt operator or Canny operator (Igbinosa,
2013; Miller, 2015)) and machine learning-based methods (e.g., ResNet, holistically-nested edge
detection).

While these approaches target image data, the growing use of LiDAR (Light Detection and
Ranging) prompted research into applying or adapting such algorithms for point clouds or on the
interpolated models and whether the given algorithms are effective for edge detection, or they need
to be modified or improved. For example, improvement of the Canny algorithm was presented by
Xu et al. (2006) where the authors tried to modify this one algorithm in order to remove some of
the shortcomings studied by them. The improved algorithm divides image into a number of sub-images

Mgr. Veronika HAJDÚCHOVÁ, Mgr. Richard FECISKANIN, Ph.D., Department of Physical Geography
and Geoinformatics, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská dolina, 842 15
Bratislava, e-mail: veronika.hajduchova@uniba.sk, richard.feciskanin@uniba.sk

 4

and detects edges with adaptive threshold values respectively. Therefore, edge points with low
height values are protected and adaptation of the algorithm is also improved. Another improve-
ment of the Canny algorithm was brought by Wang et al. (2010). Because Canny algorithm may
miss some obvious edges or involve weak edges, authors used an adaptive algorithm, which is ca-
pable of performing hysteresis threshold adaptively based on finding edge region and background
region in the gradient magnitude histogram plot, that was employed for extracting building out-
lines from digital surface model (DSM).

Recent developments include edge detection directly on the point clouds using direct or indi-
rect methods, depending how are 3D edges extracted. As mentioned in Dolapsaki and Georgopou-
los (2021), most of the existing researches use for extraction statistics and geometric methods,
where the selection of edges is based on density, massiveness, but also the object of interest. Vari-
ous techniques use algorithms to detect outlines of objects by sensing changes in the of surround-
ing elements (Weber, 2012; Dolapsaki, 2021). An interesting approach to the edge detection is the
segmentation technique, where the first step is to divide the point clouds into two groups: bare
ground (digital terrain model (DTM)) and non-ground elements (DSM). Subsequently, the process
starts from the highest height and gradually decreases where at each iteration looks for coplanar
points to create planar segments and at each elevation level then groups the points based on the
selected distance (Awrangjeb and Fraser, 2013). Such techniques are effective for extracting man-
made features (roofs, houses) but struggle with vegetation (Abdullah et al., 2014). Bonneto et al.
(2015) proposed an innovative method for the extraction of linear features using a semi-automatic
geometrical approach based on DTM. The linear features identification comes from a geometrical
analysis of the DTM. The method here described to perform linear feature detection on a DTM is
based on the assumption that a geological lineament can be geometrically identified as a convex or
concave edge of the surface of a DTM, in the presence of structural control of the geomorphologi-
cal evolution of the analysed area. The method is called semi-automatic because the user is asked
for two threshold values, in order to choose which edges are significant and therefore have to be
extracted. Authors in Makka et al. (2024) propose a method that performs 3D edge detection by
exploiting the direction differences of normal vectors in 3D point clouds. Authors have five stage
workflow starting with generation of mesh and angle computation to use also graph theory. They
used least square method to create best fitting 3D line and determine the 3D edge using RANSAC
variation.

Despite this, most research focuses on LiDAR or raster-based edge detection. In this paper, we
focus on triangulated irregular network (TIN) models. By computing the angle between normals of
adjacent triangles, we perform edge detection on 3D DTMs at various levels of decimation. This
facilitates the creation of edge hierarchies, showing which features remain prominent across dif-
ferent levels of detail.

1. Methodology

1.1 Areas / Territories

The first study area is the Bratislava – Rača district. We selected a section in the vicinity of the
old Rača (Fig. 1), where vineyards, are organized into two groups - along the slope and in terraces.
The terraced vineyards were particularly interesting due to their clearly defined edges but the terri-
tory is not so steep everywhere. Various roads and other cuts can also be seen there, as well as
a field hockey playground, which contains high steep wall on the one side. The selected area has
an elevation difference of 130.05 m with the lowest point at 151.92 m a. s. l. and the highest at
281.97 m a. s. l. (Fig. 2).

The second location is a quarry in the village of Rohožník, western Slovakia (Fig. 3). This lo-
cation was chosen because of the sharp edges of the quarry, where we want to see how the sharp
walls will display themselves during the decimation and how their edges will be visible at various
levels. This territory has an elevation range of 179.67 m with the altitudes from 262.64 m a. s. l. to
422.31 m a. s. l. (Fig. 4).

 5

Fig 1. The first location Bratislava – Rača, base map ZBGIS (https://zbgis.skgeodesy.sk/mapka/en/zakladna-
mapa?pos=48.215221,17.152061,16)

Fig 2. The first location – DTM with hillshade (1×1 km)

 6

Fig 3. The second location Rohožník quarry, base map ZBGIS
(https://zbgis.skgeodesy.sk/mapka/en/zakladna-mapa?pos=48.444189,17.210426,16)

Fig 4. The second location – DTM with hillshade (1×1 km)

 7

1.2 Workflow

Presented edge detection on TIN models is based on angle between normals of adjacent trian-
gles, because angle between triangles can show inclination differences of adjacent triangles –
planes. If the angle is smaller than given threshold value, the adjacent triangles have small plane
inclination difference, so those triangles belong to the same plane, but when there is bigger angle,
it can indicate discontinuity – edge on model.

We used airborne LiDAR data from Slovakia’s Airborne Laser Scanning (ALS), available
from the Geodesy, Cartography and Cadastre Authority of the Slovak Republic (Terrain | ZBGIS
(skgeodesy.sk)). Point clouds from ALS needs to have quality criteria (Tab. 1) and they are classi-
fied up to ten categories (Tab. 2).

Tab. 1 Compulsory quality criteria of ALS

Compulsory quality criteria:

scanning density min. 5 points per m2

overlap between swaths min. 20% on 95% of their mutual coincidence

horizontal and vertical system
S-JTSK(JTSK03)+HBpv

ETRS89-TM34+hETRS89

abs. vertical accuracy of point clouds at ellipsoidal heights ETRS89 mh ≤ 0,15 m

abs. positional accuracy of point clouds in ETRS89-TM34 mXY ≤ 0,30 m

abs. vertical accuracy of DTM 5.0 in hETRS89 mH ≤ 0,20 m

abs. vertical accuracy of DTM 5.0 in Bpv mH ≤ 0,25 m

Source: https://www.geoportal.sk/en/zbgis/als/1st-cycle/

Tab. 2 Point cloud classification

Compulsory classification Optional classification

01 Unclassified 01 Unclassified

02 Ground 02 Ground

 03 Low vegetation

 04 Medium vegetation

 05 High vegetation

 06 Building

 07 Low point (Noise)

 09 Water

 17 Bridge deck

 18 Hight Noise

Source: https://www.geoportal.sk/en/zbgis/als/1st-cycle/

After obtaining these data we process them in Cloud Compare and MeshLab software, our new
Python script and QGIS software.

In Cloud Compare software, we used only ground-classified points (class 02 Ground) to ge-
nerate a terrain models (DTMs) using Delaunay triangulation that is implemented in Cloud Com-
pare to create the model. Delaunay triangulation belong to the group of shape-dependent triangu-
lations, and it is one of the most used in the creation of a triangular network in relief modelling and
thus takes precedence over other geometric triangulations. The reason why this method is so used
is that it uses the maximization of the minimum angle and thus ensures that for a given set of
points in general position, no other point lies in the circle described in any other triangle formed
(Edelsbrunner et al., 2017; Feciskanin, 2009; Guo et al., 2021). The use of Delaunay triangulation
has still limitations because it was developed for 2D applications. A better way to create a triangu-
lar mesh would be by using the theory of an optimal triangle which can be used for land surface
modelling and generalization (Feciskanin and Minár 2020).

Next, we simplified the created TIN models using the Quadric Edge Collapse Decimation
(QECD) method, which is implemented in the MeshLab software, and is a variation of the algo-
rithm created by Garland and Heckbert (1997). It was based on the use of Quadric Error Metrics
(QEM) simplification. The essence of this algorithm is to minimize the number of vertices and

 8

faces of the original model, while the individual properties of the original model are still pre-
served. The individual simplified models created by this algorithm retain a very high fidelity com-
pared to the original model, and all important elements are preserved even with a very large sim-
plification (Fig. 5).

Fig 5. Example of a decimated territory using the QECD method (from 904,802 faces to 9,048 faces)

Our goal is to decimate the models and detect edges at various levels and thus determine their
significance. After importing our model, we selected in the Filters tab Remeshing, simplification
and reconstruction and there Simplification: Quadric Edge Collapse Decimation. We left the indi-
vidual parameters that can be adjusted on default settings, and only changed the percentage (0-1)
by which the model should be simplified compared to the initial size and preserve boundary of the
mesh. After setting the percentage reduction, we got a simplified model of the selected territory,
which we exported to an *.obj file. Because each location is different and specific, the parameters
for decimation must always be adapted in order to get the best possible results.

For the first location [raca] we created five simplified models. Because the original model was
very detailed and hard for processing, we used reduction with targeted number of 1,000,000 faces
– first level (Tab. 3). This was still very detailed for analysis, so we continued with percentage re-
duction. All levels were reduced to 0.2 from previous model. At the second location [quarry (1)]
we used the same reduction scheme.

Because this algorithm works best with minimum levels and bigger reduction, we create new
sequence in second location [quarry (2)] which was reduced with 0.1 three times, so we get similar
number of vertices and faces as in the first sequence (Table 4).

Tab. 3 Number of vertices and faces in each level after decimation

levels original 1 2 3 4 5

% reduction 20 20 20 20

raca
vertices 16,098,073 500,025 100,024 20,018 4,016 811

faces 32,192,748 999,998 199,951 39,983 7,991 1,597

% reduction 20 20 20 20

quarry (1)
vertices 24,749,362 499,011 100,099 20,304 4,006 811

faces 49,493,434 997,393 199,477 39,895 7,979 1,595

Tab. 4 Number of vertices and faces in each level after decimation

levels original 1 2 3 4

% reduction 10 10 10

quarry (2)
vertices 24,749,362 499,011 49,896 5,003 511

faces 49,493,434 997,393 99,738 9,973 993

 9

Next step included creating script for loading, calculating, and exporting data from mesh. The
script uses Trimesh library to load a 3D mesh from an input file and checks for duplicates, cleans
mesh by removing duplicate vertices and faces and prints the number of vertices and triangles in
the loaded mesh before and after cleaning. Then it identifies pairs of adjacent triangles (faces) and
for each pair computes the angle between their normal using the dot product of the face normals to
find cosine of the angle and converts it to degrees. If the angle exceeds the specifies threshold
(threshold_angle) both faces are added to the set of selected faces and shared edges between those
faces are identified and stored in list. The main result is shapefile with selected shared edges and if
it is specified, the script exports the selected faces as *.obj or shared edges as *.dxf (Fig. 6). Script
can handle bigger meshes, but it can take longer to run. Smaller meshed were run in less than
a second or few seconds, but bigger meshes with 1,000,000 faces could run up to one minute (test-
ed on computer with 32GB RAM). It also depends how big the threshold is and if we are exporting
only *.shp or other outputs. The script has arguments:

– input = input file containing 3D mesh,
– output_shp = file name for selected edges,
– threshold_angle = angle threshold for edge detection in degrees,
– crs = coordinate reference system for the shapefile, defaults to EPSG:5514 (optional),
– output_obj = file name for selected triangles (optional),
– output_dxf = file name for selected edges (optional).

Script is available on https://github.com/VeronikaH98/edge_detection.

Fig 6. Illustration of loaded mesh and outputs (triangles.obj and edges.shp) from Python script

After the decimation process in MeshLab, we run our script across all territories on all levels of
detail. Finding the optimal value for threshold angle can be challenging and often involves a trial-
and-error approach. To support this decision, we generate normalized histograms and cumulative
distribution functions (CDFs) for all levels in each territory to see distribution of angles, which can
help to select suitable threshold value. In some cases, the threshold depends on the specific types
of features that user intends to detect.

Figures 7 to 9 illustrate the normalized distribution of edge angles in three territories at all
levels of decimation. Each graph combines a histogram (showing relative frequency) with a cumu-
lative distribution function to provide clearer understanding of angle distribution. The black
dashed line marks selected threshold angle used to distinguish significant geometric features. The
CDF curves indicate that the vast majority of edges have relatively low angles, with rapid accumu-
lation below the selected thresholds. In raca (Fig. 7), over 90% of edges across all decimation
levels have angles below 30°, while in quarry (1) and quarry (2) (Fig. 8 and Fig. 9), approximately
94–95% of edges fall below 35°. This confirms that the thresholds isolate a relatively small set of
steeper angles, which are likely to correspond to more prominent geometric features.

These observations are further supported by the summary of edge counts presented in Table 5.
In raca, only 3.85% of edges at level 1 exceed the 30° threshold. Similarly, in both quarry datasets,
around 6.4% of edges at level 1 exceed the 35° threshold. This trend continues at higher decima-
tion levels, where the proportion of edges above the threshold remains consistently low. The se-
lected thresholds thus effectively separate the sharpest edges – preserving detail while excluding
smoother transitions that are less relevant for feature identification.

 10

Fig. 7 Normalized histograms and cumulative distribution functions of angles for edges across five levels of
decimation in the first location – raca. The black dashed line marks the 30° threshold

Fig. 8 Normalized histograms and cumulative distribution functions of angles for edges across five levels of
decimation in the second location – quarry (1). The black dashed line marks the 35° threshold

 11

Fig. 9 Normalized histograms and cumulative distribution functions of angles for edges across five levels
of decimation in the second location, second sequence – quarry (2). The black dashed line marks the 35°

threshold

Overall, both the graphical and numerical results validate the chosen threshold angles. They
ensure a balance between retaining important topographic or structural details and eliminating
noise or insignificant geometry. Selecting a lower threshold would include too many minor edges,
while a higher one would risk discarding meaningful sharp features. The adopted values of 30° for
raca and 35° for the two quarry datasets are therefore considered appropriate and effective for the
intended analysis.

Tab. 5 Total number of edges and selected edges (depends on threshold) on each level across

all locations

 levels 1 2 3 4 5

raca
total edges 1,048,575 298,480 59,509 17,683 3,501

edges > 30° 40,349 14,417 4,106 1,458 288

quarry (1)
total edges 1,048,575 293,551 55,962 14,847 3,238

edges > 35° 67,291 18,828 5,022 2,005 735

quarry (2)
total edges 1,048,575 148,325 14,658 1,440

edges > 35° 67,291 10,336 2,046 340

2. Results and discussion

This section presents the outcomes of the decimation analysis for all three locations. In the fig-
ures, the levels are distinguished by colors: level 2 in yellow, level 3 in orange, level 4 in red and
level 5 in burgundy.

The first location was selected mainly because of the interesting, terraced shape of the vine-
yards where we wanted to test how the given edges are detected. The threshold angle was set to
30° in this territory. Looking at the entire territory (Fig. 10), we can say that the individual edges
appear where we expected them, especially on the individual terraces of the vineyards, where they
are very prominent throughout the entire period of decimation until the last level, where some are

 12

not merged together. As we can see, almost all the terraces were so sharp and significant that even
after several times of decimation, they were very visible and did not merge with the surroundings
(Fig. 11). With lesser threshold angle, we would be probably able to capture all of terraces. Equal-
ly prominent are the edges next to the roads, the stream in the valley, which is in a few meters
deep cut, but also the field hockey stadium in the southeast of the territory, which is separated
from the family houses and gardens by a 3 to 4 meter high vertical wall over it. It was this wall
that interested us even during decimation and comparison with individual levels.

Fig. 10 Detected edges (30°) on each level in the first location – output of the edge detection algorithm
applied to the study area, highlighting how edges on different levels of detail are captured

The second location captures how decimation and edge detection behaves on a relatively sharp
terrain in a quarry, where a threshold value of 35° was set. As we expected, the decimation algo-
rithm was able to preserve the main features of the quarry even to the lowest level and thus in-
creased the angle of individual quarry walls, which enabled very accurate detection of the upper
and lower edge of the wall (Fig. 12). In the zoomed-in images (Fig. 13), detected edges are not
clearly visible, even though they are detected. The visualization in the Cloud Compare environ-
ment did not allow us to insert a line layer on the model, so it may appear as if individual edges are
missing, but they are actually located beneath the model. This is only an aesthetic issue; the edge
detection was performed correctly.

In the second sequence of the second location, we wanted to compare how the decimation algo-
rithm can deal with prominent elements even with a larger set value, i.e., a more simplified surface
already after the first level. Similar to the first sequence, we chose a threshold of 35° here. We can
see that the decimation took place in such a way that significant elements remained in each level
again (Fig. 14), but if we compare the first and second sequence, we can see that the corners of the

 13

Fig. 11 Detail of the detected edges in the first location. Closer look at vineyard terraces: A – level 2,
B – level 3, C - level 4, D – level 5

Fig. 12 Detected edges (35°) on each level in the second location – output of the edge detection algorithm
applied to the study area, highlighting how edges on different levels of detail are captured

 14

Fig. 13 Detail of the selected edges in the second location. Closer look at quarry walls: A – level 2,
B – level 3, C - level 4, D – level 5

Fig. 14 Detected edges (35°) on each level in the second location – second sequence

 15

individual levels in the quarry are sharper already in the first stages of decimation, and thus the
individual contours of the walls are better identifiable (Fig. 15). At the fourth level of the second
sequence, the number of edges and faces reached below the fifth level of the first sequence, so we
can say that the initially larger decimation set has better results, which was also pointed out earlier
in the text.

Fig. 15 Detail of the selected edges in the second location – second sequence. Closer look at quarry walls:
A – level 2, B – level 3, C – level 4

The presented procedure for processing the LiDAR point clouds into TIN models and their
subsequent decimation, on which the detection of significant edges is possible using the calcula-
tion of the angle between two neighbouring triangle normals, appears to be of high quality for
identifying and comparing sharp edges in 3D models. This approach can be applied in various
fields, including urban planning and terrain modelling. The presented script developed for this
workflow is versatile, offering clean and optimized outputs in multiple formats, and it is capable of
removing duplicates, calculating face angles, and exporting results. It can help extract and analyse
features like steep slopes, cliffs, or other significant terrain changes by identifying faces with large
angles and can be useful in CAD and GIS applications. Also, in geospatial analysis by integrating
processed 3D data into GIS systems for further analysis and visualization or in architectural and
structural engineering by analysing and extracting critical geometric features from structural
models.

 16

However, despite these advantages, the procedure has some limitations. One key challenge is
the dependence on threshold selection, which requires a careful, often trial-and-error approach that
might not generalize well across different datasets. The accuracy of edge detection can also be in-
fluenced by data quality, especially in regions with noisy or incomplete point clouds. Another
limitation is the computational load when processing large or very dense meshes, which can result
in longer processing times or memory issues. Furthermore, while the method was tested here on
DTMs, applying it to DSMs or complex urban scenes may require additional preprocessing and
filtering to ensure reliable results.

Future work could focus on automating the selection of the threshold angle based on dataset-
specific metrics and exploring the method’s performance on DSMs and building models. Despite
these challenges, the presented approach offers a valuable tool for analysing and extracting hierar-
chical edge structures in 3D data.

Conclusion

In this paper, we presented a script for edge detection on TIN models, which calculates the an-
gle between two adjacent triangles and based on a specified threshold, save and exports the identi-
fied edges. This procedure was tested on several territories at different levels of detail, providing
insight into hierarchy of individual edges throughout the entire decimation process. Although clas-
sical algorithms such as Sobel or Canny operator achieve high-quality results on raster images, this
method gives priority to 3D meshes and offers complementary information by identifying 3D
structural features. While the script performs well, selecting an appropriate threshold angle re-
mains a challenge, and further testing is needed to assess its effectiveness on DSMs or complex
urban models. Overall, this approach shows promise for extending 3D edge detection beyond tra-
ditional 2D applications and supports more detailed and hierarchical analysis of terrain and built
environments.

References

ABDULLAH, S., AWRANGJEB, M., LU, G. (2014). Automatic segmentation of LiDAR point cloud data at
different height levels for 3D building extraction. In: IEEE International Conference on Multimedia
and Expo Workshops, ICMEW, Chengdu, China, 1-6. DOI: 10.1109/ICMEW.2014.6890541

AWRANGJEB, M., FRASER, C. (2013). Rule-based segmentation of LIDAR point cloud for automatic ex-
traction of building roof planes. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial In-
formation Sciences, II-3/W3, 1-6. DOI: 10.5194/isprsannals-II-3-W3-1-2013

BONETTO, S., FACELLO, A., FERRERO, A.M., UMILI, G. (2015). A tool for semi-automatic linear fea-
ture detection based on DTM. Computers & Geosciences, 75, 1-12.
DOI: https://doi.org/10.1016/j.cageo.2014.10.005

DOLAPSAKI, M.M.; GEORGOPOULOS, A. (2021). Edge Detection in 3D Point Clouds Using Digital Im-
ages. ISPRS International Journal of Geo-Information, 10(4), 229.
DOI: https://doi.org/10.3390/ijgi10040229

DAS, S. (2016). Comparison of Various Edge Detection Technique. International Journal of Signal Pro-
cessing, Image Processing and Pattern Recognition, 9, 2, 143-158.
DOI: http://dx.doi.org/10.14257/ijsip.2016.9.2.13

EDELSBRUNNER, H., GLAZYRIN, A., MUSIN, O.R., NIKITENKO, A. (2017). The Voronoi functional is
maximized by the Delaunay triangulation in the plane. Combinatorica, 37 (5), 887-910. DOI:
https://doi.org/10.1007/s00493-016-3308-y

FECISKANIN, R. (2009). Optimalizácia nepravidelných trojuholníkových sietí pre modelovanie georeliéfu.
Dizertačná práca. Prírodovedecká fakulta, Masarykova Univerzita v Brne. [online] [cit. 2024-10-01].
Available at: <https://is.muni.cz/th/knx26/FeciskaninTextDP.pdf>

FECISKANIN, R., MINÁR, J. (2020). An optimization of triangular network and its use in DEM generaliza-
tion for the land surface segmentation. In: Geomorphometry 2020 Conference Proceedings, Perugia,
Italy. DOI: 10.30437/GEOMORPHOMETRY2020_2

GARLAND, M., HECKBERT, P. (1997). Surface simplification using quadric error metrics. In: Proceedings
of the 24th annual conference on Computer graphics and interactive techniques (SIGGRAPH '97).
ACM Press/Addison-Wesley Publishing Co., USA, 209-216.
DOI: https://doi.org/10.1145/258734.258849

 17

GUO, Y., HUANG, X., MA, Z., HYE, Y.Q., ZHAO, R., SUN, K. (2021). An Improved Advancing-front-
Delaunay Method for Triangular Mesh Generation. In: Advances in Computer Graphics, 38th Com-
puter Graphics International Conference, CGI 2021. DOI: 10.1007/978-3-030-89029-2_37

IGBINOSA, I. (2013). Comparison of Edge Detection Technique in Image Processing Techniques. Interna-
tional Journal of Information Technology and Electrical Engineering, 2, 1, 25-29. [online] [cit. 2024-
10-03]. Available at: <https://www.researchgate.net/publication/272023819_Comparison_of_Edge
_Detection_Technique_in_Image_Processing_Techniques>

JING J., LIU, S., WANG, G., ZHANG, W., SUN, CH. (2022). Recent advances on image edge detection:
A comprehensive review. Neurocomputing, 503, 259-271.
DOI: https://doi.org/10.1016/j.neucom.2022.06.083

MINÁR, J., EVANS, I.S. (2008). Elementary forms for land surface segmentation: The theoretical basis of
terrain analysis and geomorphological mapping. Geomorphology, 95, 3-4, 236-259.

MAKKA, A., PATERAKI, M., BETSAS, T., GEORGOPOULOS, A. (2024). 3D Edge Detection based on
Normal Vectors. The International Archives of the Photogrammetry, Remote Sensing and Spatial In-
formation Sciences, XLVIII-2/W4-2024, 295-300. DOI: 10.5194/isprs-archives-XLVIII-2-W4-2024-
295-2024

PACINA, J. (2008). Metody pro automatické vymezování elementárních forem georeliéfu jako součást Ge-
omorfologického informačního systému. Disertační práce. Plzeň (Západočeská univerzita, Fakulta ap-
likovaných věd).

PU, M., HUANG, Y., GUAN, Q., LING, H. (2021). RINDNet: Edge Detection for Discontinuity in Reflec-
tance, Illumination, Normal and Depth. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV). [online] [cit. 2024-10-02]. Available at:
<https://openaccess.thecvf.com/content/ICCV2021/papers/Pu_RINDNet_Edge_Detection_for_Disco
ntinuity_in_Reflectance_Illumination_Normal_and_ICCV_2021_paper.pdf>

WANG, Z., LI, H.-Y., WU, L.-X. (2010). QEM-based simplification of building footprints from Airborne
LiDAR data. In: IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA,
1186-1189. DOI: 10.1109/IGARSS.2010.5654122

WEBER, CH., HAHMANN, S., HAGEN, H., BONNEAU, G.-P. (2012). Sharp feature preserving MLS sur-
face reconstruction based on local feature line approximations. Graphical Models, 74, 6, 335-345
DOI: 0.1016/j.gmod.2012.04.012

XU, J., WAN, Y., ZHANG, X. (2006). A method of edge detection based on improved canny algorithm for
the lidar depth image. Geoinformatics: Remotely Sensed Data and Information, 6419, 64190O–
64190O–9). DOI: http://doi.org/10.1117/12.712923

R e s u m é

Detekcia hrán pomocou zjednodušenia trojuholníkovej siete

Tento článok predstavuje novú metódu a skript na detekciu hrán na nepravidelnej trojuholníkovej sieti
(TIN), ktorá sa odlišuje od tradičných a existujúcich prístupov zameraných prevažne na 2D rastrové obrazy.
Metóda je založená na výpočte uhlov medzi normálami susediacich trojuholníkov, pričom väčší uhol signali-
zuje diskontinuitu alebo hranu.

Hlavným cieľom je aplikácia tejto metódy na digitálne modely reliéfu (DMR) na rôznych úrovniach zjed-
nodušenia, čo umožňuje vytvárať hierarchie hrán a identifikovať najvýraznejšie prvky. Metodika zahŕňa vyu-
žitie údajov z leteckého laserového skenovania (LLS) zo Slovenska. Proces spracovania dát zahŕňa softvér
CloudCompare na generovanie DMR pomocou Delaunayovej triangulácie z klasifikovaných bodov terénu.
Následne sú TIN modely zjednodušené v softvéri MeshLab pomocou metódy Quadric Edge Collapse De-
cimation (QECD), ktorá aj pri veľkom zjednodušení modelu dokáže verne zachovať jeho pôvodné vlastnosti.
Vyvinutý Python skript pracuje v niekoľkých krokoch: načíta 3D sieť, identifikuje a odstráni duplikáty, vy-
počíta uhly medzi normálami susediacich trojuholníkov a identifikuje spoločné hrany, ak uhol presiahne špe-
cifikovanú prahovú hodnotu. Výstupy je možné exportovať ako *.shp alebo *.dxf pre vybrané hrany a voli-
teľne aj ako *.obj pre vybrané plochy trojuholníkov. Skript je voľne dostupný na GitHub-e a spúšťa sa z prí-
kazového riadku.

Výber optimálnej prahovej hodnoty uhla je náročný a často zahŕňa metódu pokusu a omylu, pričom na
podporu tohto rozhodnutia boli použité normalizované histogramy a kumulatívne distribučné funkcie (CDF).
Pre lokalitu Rača bola prahová hodnota nastavená na 30°, zatiaľ čo pre kameňolom bola použitá hodnota 35°.
Tieto prahové hodnoty efektívne izolovali strmšie uhly zodpovedajúce významným hranám.

Výsledky z testovaných lokalít (Rača, kameňolom Rohožník) potvrdili efektívnu detekciu terénnych prv-
kov ako terasy viníc a steny lomu, ktoré zostali viditeľné aj po niekoľko násobnom zjednodušení. Väčšie po-

 18

čiatočné zjednodušenie viedlo v niektorých prípadoch k ostrejším hranám. Prezentovaná metóda je využiteľná
v GIS a CAD aplikáciách napríklad pre analýzu terénu, no medzi obmedzenia patrí závislosť na výbere pra-
hovej hodnoty, kvalita vstupných dát a výpočtová náročnosť pre rozsiahle siete. Budúci výskum sa zameria
na automatizáciu výberu prahových hodnôt a aplikáciu na zložitejšie modely. Celkovo metóda posúva 3D
detekciu hrán a umožňuje detailnejšiu hierarchickú analýzu terénu.

Fig. 1 Prvá lokalita Bratislava – Rača, základná mapa ZBGIS

Fig. 2 Prvá lokalita – DMR s tieňovaním reliéfu (1×1 km)

Fig. 3 Druhá lokalita kameňolom Rohožník, základná mapa ZBGIS

Fig. 4 Druhá lokalita – DMR s tieňovaním reliéfu (1×1 km)

Fig. 5 Príklad zjednodušeného územia pomocou metódy QECD (z 904 802 trojuholníkov na 9048 troju-
holníkov)

Fig. 6 Ilustrácia výstupov z Python skriptu (triangles.obj a edges.shp)

Fig. 7 Normalizované histogramy a kumulatívne distribučné funkcie uhlov pre hrany na piatich úrovniach
zjednodušenia v prvej lokalite – rača. Čierna prerušovaná čiara označuje prahovú hodnotu 30°

Fig. 8 Normalizované histogramy a kumulatívne distribučné funkcie uhlov pre hrany na piatich úrovniach
zjednodušenia v druhej lokalite – lom (1). Čierna prerušovaná čiara označuje prahovú hodnotu 35°

Fig. 9 Normalizované histogramy a kumulatívne distribučné funkcie uhlov pre hrany naprieč všetkými
úrovňami zjednodušenia v druhej lokalite, druhá sekvencia – lom (2). Čierna prerušovaná čiara
označuje prahovú hodnotu 35°

Fig. 10 Detegované hrany (30°) na každej úrovni v prvej lokalite – výstup algoritmu detekcie hrán apli-
kovaného na študovanú oblasť, zvýrazňujúci, ako sú zachytené hrany na rôznych úrovniach detai-
lov

Fig. 11 Detail detegovaných hrán v prvej lokalite. Bližší pohľad na terasy vinohradov: A – úroveň 2, B –
úroveň 3, C – úroveň 4, D – úroveň 5

Fig. 12 Detegované hrany (35°) na každej úrovni v druhej lokalite – výstup algoritmu detekcie hrán apli-
kovaného na študovanú oblasť, zvýrazňujúci, ako sú zachytené hrany na rôznych úrovniach detai-
lov

Fig. 13 Detail detegovaných hrán v druhej lokalite. Bližší pohľad na steny lomu: A – úroveň 2, B – úro-
veň 3, C – úroveň 4, D – úroveň 5

Fig. 14 Detegované hrany (35°) na každej úrovni v druhej lokalite – druhá sekvencia

Fig. 15 Detail detegovaných hrán v druhej lokalite – druhá sekvencia. Bližší pohľad na steny lomu: A –
úroveň 2, B – úroveň 3, C – úroveň 4

Tab. 1 Povinné kvalitatívne kritéria skenovania

Tab. 2 Klasifikácia mračna bodov

Tab. 3 Počet vrcholov a trojuholníkov v každej úrovni po zjednodušení

Tab. 4 Počet vrcholov a trojuholníkov v každej úrovni po zjednodušení

Tab. 5 Celkový počet hrán a vybraných hrán (v závislosti od prahovej hodnoty) na každej úrovni vo všet-
kých lokalitách

Prijaté do redakcie: 13. apríl 2025

Zaradené do tlače: jún 2025

