Úvod do DPZ - cvičenie 3, časť 2

Predspracovanie obrazu

Tvorba výrezov a multispektrálneho priestoru

Nekontrolovaná klasifikácia

Tvorba trénovacích množín

Semi-Automatic Classification Plugin for QGIS

<u>https://fromgistors.blogspot.com/p/semi-automatic-classification-</u> <u>plugin.html</u>

autor Luca Congedo

https://fromgistors.blogspot.com/

Landsat

Landsat-7 ETM+ Bands (µm)			Landsat-8 OLI and <i>TIRS</i> Bands (µm)		
			30 m Coastal/Aerosol	0.435 - 0.451	Band 1
Band 1	30 m Blue	0.441 - 0.514	30 m Blue	0.452 - 0.512	Band 2
Band 2	30 m Green	0.519 - 0.601	30 m Green	0.533 - 0.590	Band 3
Band 3	30 m Red	0.631 - 0.692	30 m Red	0.636 - 0.673	Band 4
Band 4	30 m NIR	0.772 - 0.898	30 m NIR	0.851 - 0.879	Band 5
Band 5	30 m SWIR-1	1.547 - 1.749	30 m SWIR-1	1.566 - 1.651	Band 6
Band 6	60 m TIR	10.31 - 12.36	100 m TIR-1	10.60 - 11.19	Band 10
			100 m TIR-2	11.50 – 12.51	Band 11
Band 7	30 m SWIR-2	2.064 - 2.345	30 m SWIR-2	2.107 - 2.294	Band 7
Band 8	15 m Pan	0.515 - 0.896	15 m Pan	0.503 - 0.676	Band 8
			30 m Cirrus	1.363 - 1.384	Band 9

Zdroj: https://landsat.gsfc.nasa.gov/landsat-data-continuity-mission/

Landsat

Zdroj: https://landsat.gsfc.nasa.gov/landsat-data-continuity-mission/

Predspracovanie obrazu

1. Geometrické korekcie

2. Rádiometrické korekcie

- konverzia digitálnych hodnôt (DN) na odraznosť (reflektanciu)
- prebieha v dvoch krokoch:
 - A konverzia DN na spektrálnu hustotu žiarivého toku (radianciu)
 - **B** konverzia radiancie na reflektanciu
- využívajú sa pri tom kalibrované hodnoty pre jednotlivé spektrálne pásma z metaúdajov

Odraznosť

- podiel odrazenej a prijatej energie žiarenia
- vyjadruje efektívnosť povrchu alebo materiálu pri odrážaní žiarenia
- závisí od vlnovej dĺžky žiarenia
- bez jednotiek <0,1>

 $R = \frac{\Phi_e^r}{\Phi_e^i}$

Predspracovanie údajov v SCP Plugin

- **1. Konverzia DN na reflektanciu** Proprocossing → Landsat
- Preprocessing → Landsat

- 2. Tvorba ľubovoľného výrezu (podľa poznania lokality) Preprocessing → Clip multiple rasters
- **3. Tvorba farebnej syntézy (spojenie pásiem)** Band set → Landsat 8 OLI wavelength settings → Create raster of band set (stack bands)

Ľubovoľný výrez na klasifikáciu obrazu č.1

Neznáme územie

1. Nekontrolovaná klasifikácia

Band processing → Clustering (zmeňme len *standard deviation 0.2*)

2. Informácia o početnosti v zhlukoch

Postprocessing → Classification report

Class	PixelSum	Percentage %	Area [metre^2]	
1	147155	28.99034672970843	132439500	môj výsledok
2	158772	31.278959810874706	142894800	
3	125327	24.690110323089044	112794300	má zmysel uvažovať o 5
4	57822	11.391252955082741	52039800	zhlukoch
5	18214	3.5882584712371948	16392600	
6	310	0.061071710007880226	279000	

Neznáme územie

 Zmena farebnej palety
 Fotointerpretácia podľa syntézy, WMS,...

Neznáme územie

5. Reklasifikácia Reclasification

	Old value	New value	
1	1.0	1.0	les
2	2.0	1	les
3	3.0	3.0	pole1
4	4.0	4.0	pole2
5	5.0	5.0	abiota
6	6.0	6.0	kameňolom

Klasifikovaný obraz

veľa klasifikačných chýb, preto zopakovať proces zhlukovania

alebo pristúpiť ku kontrolovanej klasifikácii

Výrez č.2 na kontrolovanú klasifikáciu

Triedy krajinnej pokrývky

- 1. Voda
- 2. Les
- 3. Polia s vegetaciou
- 4. Polia bez vegetácie
- 5. Abiota
- 6. Luky

Tvorba trénovacích množín

- 1. Vektorizácia v QGIS
- tren.shp → stĺpec MC_ID
- Web →QuickMapServices (Setting → More Services → Get Contributed Pack)
- 2. Spojenie polygónov
- Vector → Geometry Tools → Collect Geometries (Unique ID fields MC_ID, Collected – tren.shp)
- 3. Vyplnenie atribútovej tabuľky
 MC_Name → názvy tried (bez diakritiky!)
 C_ID = MC_ID, C_Name = MC_Name

Trénovacie množiny

Tvorba trénovacích množín

- 4. Import do SCP & Dock
- kontrola pripojenia rastra SCP → Band set (clip_RT_LC8_Bstack_raster)
- Training input → Create a new training input (tren.scp)
- Training input → Import spectral signatures → Import shapefile (kontrola polí)
- 5. Tvorba grafu v SCP & Dock
- Training input→Add highlighted signatures to spectral plot
- 6. Uloženie trénovacích množín v SCP & Dock
- Training input ->Export highlighted spectral signatures (tren.scp)

Spectral signature plot

Spectral signature plot

